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ABSTRACT

The solutions of Schroedinger equations

(1.1) c2d2w/dz2 + q2w = 0, q = q(z), c - 0

'have well-known VKB-approximations, but the coefficients in these differ

on the two sides of a turning point. A new method For connecting them

across such points is developed to extend present theory to a more

general class of turning points, which includes logarithmic branch

points of q(z), among many otbers. To this end, a delicate contrac-

tion for an integral equation differing from those of Langer and Olver

is used to show that Bessel functions can still approximate the solu-

tions at a certain, small distance from the irregular point of'(1'.1), U i

even though not uniformly near it. A novel feature of the analysis is

that the extreme variation of the exDonential kernel is here controlled

even on non-progressive paths. Connection is completed radially by

means of the same integral equation.
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SIGNIFICANCE AND EXPLANATION

This work concerns the modulation of waves or oscillating

systems, which pervade all the science and engineering disciplines.

Modulation occurs when waves travel through an inhomogeneous

material in which the local proPagation velocity differs from olace

to olace, but the differences are small over a distance of only a

wavelength -- a very common case in the sciences and engineering.

The resulting change to the waves is mostly gradual, but occasion-

ally drastic, as at a shadow-boundary, where oscillation turns into

decay and quiescence over just a few wavelengths. When this ohe-

nomenon can be analyzed via an ordinary differential equation, such

a boundary is called a turning point.

At first, only the simplest turning points representing the

most typical shadow boundaries were studied. But then some ohe-

nomena, such as wave reflection and scattering cross-sections, came

to be traced to hidden turning points that become visible only when

real distance (or time) is embedded in its comolex plane. When the

material properties vary in a general manner, (which can often be

observed only incompletely) the hidden turning points can have

arbitrarily complex structure. The following work extends the

basic mathematical formula for connecting waves with shadow across

a turning-point boundary to a much larger class of variations in

the material properties than had been accessible up to now.
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descriptive summary lies with MRC and not with the authors of this
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OJNNECPION OF CLOSE QUARTERS TO GENERALIZED TURNLNG POLNTS

J. F. Painter and R. E. Meyer

1. Introduction.

The best-known and nost important aooroximate solution to the

equation

(I.1) Ed 2w/dz + q (z)w(z)= 0, E- O.

is the VKBJ solution, sometimes also called the Liouville-Green

solution,

(1.2) w(z) - Aq-/Z (z)exp [is - f Zq(zs) dz']

+ B q-I/2 (z)exp[-iE- f q(z') dz']

This solution has only limited value around a singularity of q'/q.

It is valid in a closed region R which has no singularities or

zeroes of q and which satisfies a certain convexity proDerty.

Because of this convexity pronerty, such a region R can contain

only one "side" of a singularity or zero of q. Inpractice, oneneeds

to mnow w(z) on both sides at once, and that requires a much more

careful study of w(z) than needed to obtain (1.2).

Lawrence Liverrore Laboratory, Livermore, California, 94550

Sponsored by the United States Army under Contract Nos. DAAG29-75-
C-0024 and DAA29-80-C-0041. The work was supported partially by
the National Science Foundation under Grant No. 3S77-00097 and
under its Traineeship Program, and by Fellowships of the University
of Wisconsin and of the Wisconsin Alunni Research Foundation.
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This convexity property is defined in terms of the natural inde-

pendent variable F, which aDears in (1. 2):

z

(1.3) = 0q(z')d z'
0

Consider R = RU the region of validity of (1.2), as a set in the

L-plane. If two points of R have the same imaginary part, then

the horizontal line joining them rust itself lie in R . As R

does not contain any singularity or zero of q, this means that it

cannot have any F both to the right and to the left of a singu-

larity or zero of q (Figure 1.1). The need for this convexity

property arises in the proof of (1.2) from a need to have the exoo-

nentials monotone on curves connecting points of R so that they

can be bounded in terms of their nmagnitude at endpoints.

The limitation on where (1.2) can be applied leads to the connec-

tion problem given the values of the coefficients A,B for which

(1.2) applies on the left side of z = 0, a singularity or zero of

q, find their values on the right side.

The most satisfactory way to solve this problem would be to get

a closer approximation to w(z) than (1.2) - one that is good at

both sides of z = 0 simultaneously. Langer (1931, 1932, 1935),

Riekstins (1958), and Olver (1977) have done exactly that for the

simlest case, where q(z) is aporoxinmtely a real power of z near

z = 0. Then the approximation (1.2) by exponentials may be replaced

by an approximation by Hankel functions. The exnoential anproximation

-2- -
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(1.2) holds in a set bounded away from z = 0, while the Hankel

function annroximation holds arbitrarily near z = 0 as well.

When q(z) is not a power of z, the connection problem grows

more complicated. Painter (1979) has shown for a logarithmic q(z)

and imaginary E that the Hankel functions will not serve any better

than the exponentials of (1.2). The central connection methods which

work when q(z) is a power of z are not adequate in greater gener-

ality because the local anproxinmnds are much less tractable.

The problem is that the singularity of q(z) at z = 0 may, in

the general case, be vicious enough to upset computations made near

z = 0 . The most natural way to deal with this problem is to run

away from it, to solve the connection problem as a "lateral" connec-

tion problem, solving the equation at I zI = * .

This sort of method, however, is doomed from the start. Distance

from the singularity makes it hard to use information about it, but it

turns out that the answer to the connection problem is strongly

depende.nt upon the nature of the singularity at z = 0.

The route to the solution of this dilemma lies in the middle of the

road, between the central and lateral approaches. Equation (1.1)

will be solved, approximately, at a carefully controlled distance from

z = 0 . Some of the advantages of both the central and the lateral

connection approaches will show up well enough to give an answer

to the connection problem.

The method used will be to derive, from the ditirtntial equation

(1.1), in integral equation for the coefficients A(E ), B() for

2|" -4-



which Vie approximate solution (1.2) is exact at z . That is,

(1.3) w(z) = A( )q- (z)exp (it/) + B()q-/ (z)exp (-4./E)

The int3gral equation will then be written into forms for which it car

be partially solved by the contraction mapping theorem, i . e., by

iterations. Some of these versions of the integral equation give A(E)

or B(E) in various regions; others show that A( ) - AY (r) is small

in certain areas, where AY  is the result of substituting z v  for

q(z) and can be expressed in terms of Hankel functions. Proving

that the iterations which solve the equations work, involves many

estimates, which depend especially upon careful choices of the curves

along which various integrals are computed.

We will be studying the connection problem for a class of singu-

larity at z = 0 defined in terms of a modulation function

,( M = 1 q'(z)/q 2(z) by P( ) - Y/ near zero, where Y is any

real constant < 2. In terms of q, this includes the case which

Langer and others have studied, where q(z) - z as z - 0. Mbre

irrortant, it generalizes that case to include logarithmic "turning

points" such as q(z) - z(log z)'(v > -1) and many others. It will

be p)roven that the same connection formula which holds for q(z) - z

also holds for this general case; that is, when the region of interest

connects regions to left and right above the turning Doint (Fig. 1. 1b).

the coefficients Ar, Br  in (1.2) to the right of zero denend unon

those on the left as follows:

_I 'cIr-- -5- _______



(1.4) A= A£ - 2B(yiin(y) + 0(1)

Br= B + o(I)

A dcal forrmula, in which A and B exchange roles, applies

when the connection is made below the turning moint (Olver 1974).

Many other fornulations of the WKB connection Problem arise in prac-

tice, but all are reducible straightforwardly to (1.4) or its dual.

Section 2 is devoted to the formulation of the integral equation

which was found capable of solving the connection Problem with nMre

generality than before. In some ways, it is intermediate between the

simle WKB integral equation with exponential kernel (Olver 1974) and

Langer's, with Bessel kernel. The pronerties of the new kernel,

which is related to the incomlete Ganmr function, are discussed in

Section 4. The main Section 3 outlines the mthod of connection

along a semi-circle of radius 6(c) tending to zero almost as fast

as c; Section 5 sunDlies details of the nroofs. In Practice, con-

nection between noints left and right, but so close to the turning

Point, is inadequate and Section 6 therefore extends the results to

arbitrarily large distances.

While our Proof of (1.4) is valid also for y = 0, the fornula

is not very informative in that case. The reason is that no informa-

tion has then been specified about P(n). Mbdulation functions

behaving like (E log 0)-I near zero have been treated by Painter

(1979) along lines Paralleling those here renorted, but involving

nuch added labor because the kernel is more complicated. bre

4. ' -6-



definite results than (1.4) were deduced (Painter 1979) for that class,

which includes, e.g., q(z) which are, or am~roxinate, a power of log

z near z 0.



2. Integral Equations for Connection.

The main integral equations needed to solve the connection prob-

lem com from the original differential equation, (1.1), which we

take to be valid for z in an open set R of comrlex nurbers. Wez

assure q(z) to be holomrrhic and nonzero in Rz; if q have a

singularity or zero, it will lie on the boundary of R . We take

to be nositive.

The MKB solution suggests that we look at (1.1) in a different

ifn-m. This anproximate solution is

(2.1) w(z) 1Aq-1/2 (z)expi/] + Bq- 1 /2 (z) ex [-is/E]

(2.2) w'(z) 1 (iA/k)q /2ex)[i /e] - (iB/E)q1 /2exn[-i&/c]

where A and B are constants and

z

(2. 3) (Z) = f Zq(z')dz'

zo

With no loss of generality, we may take the fixed point z = 0.

The approximation (2.1), (2.2) is valid in closed botnded sub-

sets Sz of Rz with sufficiently smooth boundaries, which satisfy

a "horizontal convexity" property. If we set S = (Sz ) then SE

is horizontally convex iff for any two points of S with equal

imaginary parts, the line joining them also lies in S . Because

the variable E shows up in a nore fundamental way than does z

here, is a mre natural indenendent variable.

-8-



This horizontal convexity requirement, mreover, is the source

of the connection problem. Sunpose that q(z) has a possible singu-

larity or zero at one point of the boundarv of Rz, say at z = 0.

(Here and henceforth we assume that q(z) is holonorohic and nonzero

at the other boundary points of Rz). We nust assume q(z) to be

integrable at z = 0 so can be defined by (2. 3). We mw/ use

(2.1) to copute w in a large neighborhood of a point to the left

of zero, < 0, and in a neighborhood of a point to the right of

zero, r 0; nevertheless if we were to know the coefficients

AB q for which (2.1) holds near 7, equation (2.1) would not help

us find the correspondin- coefficients Ar, B for r1. This isrrr

because (2.1) cannot be apDlied in a set which contains both and

r at once.

For the connection problem we seek to know A and B in termsr r

of A Q and B . We will find Ar  and Br by considering (2.1),

(2.2) as equations exactly true throughout Rz, that is,

q /2w(z) = A()exp(i /c) + B(E)ex(-iE/c)

(2.4) cw'(z)/(iq /2) = A( )exp(i /F) - B( )exn(-i/E)

for e R =  (RZ)

Thus, Az = A(E ), BZ = B() Ar =A(), and B = B()
ZZ ' r rr

Substitution of (2.4) into (1.1) yields equations for the mdula-

tion coefficients A(E) and B(E),

-....



(2.5) dA/d4 =

(z. 6) dB/dt = 9( )A( )e

where is the "mcdulation function"

(2.7) 1 q-ld d

and p = 21./

In order to solve (2.5) and (2.6), we shall associate them

with integral equations. First, though, we must ensure that the

integral equations will exist: we assume that R is connected

and sinply connected, and that it contains the set

g :IRet Is 6o,Imt z 60 } \ ft:Re = 0,0> m% > -i}

with 6 > 0 (Figure 2.1). For example, if q(z) be singular only

at z = 0, R could consist of all complex numbers, less z = 0

and a branch cut from zero to infinity. We also assume that ()

grows no more than exponentially as t - - i = for - 60 Ret 1 60

(Ret / 0). That is, we assume that 4(t) = @ (exp (Ki! f)) with

a constant (not depending on 6).

At this point, a choice has been made in regard to the cut

(Fig. 2.1), and its inplication should be explained. First of all,

the original formulation of the Schroedinger equation (1.1) is some-

what arbitrary. It is the nnst general, linear ordinary differential

-10- _ _
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equation of second order in normal form, but there is a whole faily

of "Liouville" - transformations z - z' (z) leaving the normal form

of (1.1) invariant, but of course, changing the coefficient q(z)

into a different coefficient Q(z') and changing the appearance of

a connection problem. This explains why connection problem can come

in so nmy guises and why it is difficult to tell at the outset

whether two people are talking about (Liouville transform of) the

same connection problem or about genuinely different ones.

By contrast to z, (z) is the distinguished variable charac-

terizing the oscillatory nature of the solutions. Where an approxi-

mation (2.1), (2.2) holds, JAI and IBI represent anmlitudes and

-F arg(Aq- 1 / 2) and -s arg(Bq- 1 / 2 ) , phases; E/2TrE) measures

distance or time in local wavelengths or periods. Any canonical

formulation of the connection problem mist therefore by in term of

. The real axis of C is the line on which (2.1), (2.2) are purely

oscillatory, without exponential growth or decay, and this makes

connection between < 0 and . > 0 the mst commn form of the

problem. It leaves a pair of problem, however, one with the cut in

the lower half-plane and the other, with the cut in the upper one.

These are analogous, dual problem, differing just by an exchange

in the roles of A( ) and B(E). For definiteness, that with the

cut in the lower half-plane is selected for study here.

The integral equations

(2.8) B(g) - B2 = f w(s)A(s)ePSds

____________-12- _ _ _ __



(Z.9) A(t)-A 1 = f t(s)B(s)e- P s ds

are inmediately associated with (2.6) and (2.5). For the present

choice of cut, however, a single integral equation involving A

alone, rather than A and B a3 111 (2.9), is more helpful. Towards

that end, integrate (2.9) by parts:

S sS

(Z.lO) A()-A = B(s) f q(t)e- Pt dt =  
- J S ds f V(t)e"-dts= tg ds

To clarify the structure of (2.10), let

(ZI)J( )e-  =J00 e- P o(t)dt

For sufficiently small s, the exponential factor decreases nmuh

faster than 'P increases as t --i-, so that this integral (2.11)

converges. The kernel in (2.10) is then

(2.12) j( ,s)e - p = fte-Pt qp(t)dt = J(s)e - l s - j(g)e-Pt
S

and by (2.6), (2.10) becomes

(2.13) A() -A, = BJ(4, 2 )exp(-pt,) + J 4(s)A(s)J(t, s)ds

, -' -13-- _ __ __



This will be our basic integral equation. We shall solve it for

A(: r), returning to the much simpler problem of finding B('Tr) only

at the end.

We will usually take the path of integration for (2.8) and (2.13)

to be an arc of the circle s! = z. The radius S = (_) will be

chosen as a compromise between t conflicting needs. First, if q

has a singularity or zero at T = 0, that will determine the connec-

tion coefficients, so we must do computations near zero in order to

get an answer. On the other hand, if q has a singularity or zero

at = 0, then p my be behaved badly enough to make computa-

tions excessively difficult if they be done too near 0. Such

conflicts will lie at the heart of much of the analysis.

The basic conditions on 6(c) are that:

(2.14) (a) 6(E)> 0 (b) 6()- 0 (c) 6(e)/E- as E- 0

Condition (2.14b) is strengthened in Section 3, equation 3.21.

We take and r to lie on the circle = 6; i.e.,

(2.15) r =

The coefficients A(t), B( ) at g = Z and = are normally

approximately equal to the coefficients at greater distances from zero,

such as = -l and = 1. That will be discussed in ection 6.

-14-



3. Close Connection.

3.1. In order to aDproximate the WKB coefficients on the right,

Ar  and Br, in terms of given values of the coefficients on the

left, Az and B., we must know somthing about the singularity

between the right and left, at = 0. Since we are interested in

q(z) which have logarithmic behavior at z = 0, we choose an

assunption which will cover such q. We assue that:

(A) ($) M y as 1 1 - 0

uniformly in arg for which o is defined; i.e., e R&. Here
1

y is an arbitrary constant, with - < y < 1

In Section 5.1, it will be shown that (A) holds with

I V(V+ i) - I when q(z) = zv(log z), with v and v real

and v > -1. (A) also covers the "fractional" turning point class

studied by Langer, Riekstins and Olver (1977).

To use the basic integral equation (2.13), we must begin by

estirmting the kernel j(&,s), which is complicated by the lack of

information on the rate of approach to the limit (A); the full report

is postponed to Section 4. The method is to substitute (A) into

(2.11) and (2.12). Once the resulting error term are successfully

dealth with, j()e -  will be approximted by an inconplete ganrm

function:

fe Pt(Y/t)dt

• , -' - .? .. .. - .. . .... . ... .
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This can be further approximated by a well-known formula, except

near t =t, At = , another method can be used. The most

important difficulty in dealing with the error terms involved lies in

the fact that exp(- pt) in (Z.11) is large when the imagainary part

of t does not quickly approach zero; while if t does quickly

approach zero, then not only will p(t) in (2.11) grow large, but

so will the error term q(t) - (Y/t) = o(t- ). This sort of problem is

handled primarily by care in choosing the different paths of integration

on whicn (2.11), (Z.12) and their error terms are computed. The

results are summarized below. These asymptotic formulae hold

uniformiy as E - 0, for t and s lying on arcs of the circle

ItI = IsI =6(s); thatis, iP i psi =26/E. These arcs are

pictured in Figure 3.1.

(3.1) J(R) = (Y + o(1))/(p ) for Oc arg t a -eo(Figure 3.1 (a))

where eo > 0 is an arbitrary constant.

(3.2) j(g . s)e -ps = (Y + o (1))(e-PS/(ps) - e - p/ )

for Os argt - e 0  and 0Osargs r - (Figure 3.1 (a))

(3.3) J( , ,) e = (Y + o(l))[exp(-Ptr)/(p ) - exp(- p )/(pt) - Z-i]

for O arg4 a - e 0  (Figure 3.1 (a))

(3.4) J( , S)e = O(e-P4/(pt))

for s argg a arg sa ir (Figures 3.1 (b) and (c))

-16--S-



FIGURE 3.1 Arcs of validity of equations (3.1)-(34)
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FIGUZE 3.1 Arcs of validity of equations (3.1)
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3.2. We need a bound on A( ) before we can compute

it. First, note that the derivation of (2.13) can be repeated with

ar in place of to give

(3.5) A( ) - Ar = B rJ , ar) exp (- Par) + fr(s)A(s)j(%, s)ds

There is exponential behavior in A; we extract Tost of it

by nultiplying A(s) by an exponentially snall factor:

(3.6) a(t) = A(t)epa .

Then equations (Z.13) and (3.5) become:

(3.7) a(,) - adexp(pE - Pad)= BdJ( lad) exp(pa- Pd)

+ f a(s)j( , s)exp(p - p s)p(s)ds
9d

where "d" can be either "V" or "r". To have the

exnonential in the integral in (3.7) botnded, we require 5 to

lHe In tie same quadrant as d (Figure 3.2). That is, if ad =

then :9 arg S ir , so that 1T a arg(p ) t arg(ps) s arg(pt/) =3.
If ad are then 0 & arg s , so that arg(p) = Tr/Z a arg(Ps)

it arg(p,) Tr -

With such E, if s lies between and d as in the

Integral of (3.7), then p s will have greater real part than pt,

-19-



so that exp(p - ps) will be bounded. Moreover, we may use (3.2)

or (3.4) to find that, for s in the integral in (3.7) or for s = i

(3.8) j( , s)exp(p - ps) = &(p ) -= o(E/6) - 0

Substituce (3.8) and assumption (A) into (3.7).

(3.9) a(g) = AdePa + Bd (E/) + I IaI Id a c ds

where Ilall d is the sun norm, applied for or s on the quarter-
circle allowed (Figure 3.2); that is, Ilall sup{la(s) :2-< arg(s)

i ,Isl = 6} and IlaIIr. supl{a(s) I : 0 < arg(s) < Tr/2,IsI=

Let

(3.10) C = max(IAI, IArI IB I, IBI)

We shall see, of course, that C is usually botded as E -- 0,

but that is not yet known. The integral in (3.9) is bounded by r/ 2 ,

and the exponential decreases (or is constant) in magnitude as E : 0,

so that (3.9) becomes

Therefore,

-20-



FIGUII 3.2 : Locations of T and s in Chapter 3,
Section 2
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d

IlaliK = c

and, hence,

(3.11) I1ailI,= sup [{a(t)l :) = 6,0:c arg s . = S(C)

We may use (3.6) to translate this back into the original A(t)

notation.

(3.12) A(t) = C 0(e P ) = C ((e26/s)

for t on the entire semicircle It I = 6, o s argt z

(Figure 3.2 (c )).

The arg ent that produced this bound can be carried out n-re

precisely to give a fornula for A( ) valid on the arc
1 <T arg < 7T - 80  (Figure 3.1(d)). That is done in Section 5.3.

3.3 Now we can corpute A( ) by showing it to be close to a

known function A(c). We have described A( ) by following three

equations:

(Z.13) A(t)= A_ + B ,)exp(- P _)_ + A(s)j(_,_s)_(s)ds

, -22-



(2.12) j(% s) e--- (- ps) = -J exp p-t (t)dt

s

(A) 'P(t) = (y + o(l))/t

We define AY( ) by replacing p(t) by exactly Y/t; that is,

(3.13) AY(%)= A. + B jt(,[ 4 )exp(-fE.)+ fAY(s)j (%,s)Ys - ds

(3.14) ly(% s) exp (- ps) f ex t )Yt I"dt

s
VI )-1

If q(zj= z", then p(t) = Y/t with Y= v(1 + v) ; thus

AN ( ) Is the modulation coefficient for the special case of

q(z) = z v . For such q, the solution w(z) to (2.1) can be

written exlicitly in terms of Hankel functions (Section 5.2), so

we know A7 exactly.

In Section 4.8, we show that j and jY are approximtely

equal in the following sense. The error bounds are defined in

terms of

(3.15) h(c) = max(g(8), exp(-26/E))

where g(6) is the maximum error in assumption (A), that is,

(3.16) g(6)= sup '( )-Y' : I • 6, R
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Note that g(6) - 0 as 6 - 0, so also h(s) - 0 as s - 0

All of the following 3 equations hold for and s satisfying

= sl = 6, and with E - 0

(3.17) j (g, s) = (1 + &(h(s )))j ( , s)

for O! argt : .- no  0 9 args I - e o  (Figure 3.1 (a))

(3.18) j( ,1) = (1 + (h))j ( . )

for O arg s Tr -e 0 (Figure 3.1 (a))

(3.19) J(os) = JY( ,s) + r(h) E 6 -1exp (ps -

for I : arg~ arg ss &Tr (Figure 3.1 (c)).

Since we want to use this to show that A( ) - AY(t) is small,

we next combine (Z.13) and (3.13) into an equation for

A( ) - A

(3.20) A( ) -A (e )= B,[ri(m,) - JI(, 2 )]exp(_pgj) +

+ f tA (s)[j( , s)W(s) - j (, s)Ys- )ds +

+ ft [A(s) - AY(s)]J( e , s),(s)ds

This equation will be solved approximately in the next two subsections.

They will depend upon a restriction on the choice of the arbitrary

function 6(s). So far we have requir-d that E < 8 (F) < 1. NoN

we alsc, require 6(E) to satis-y

.4~ 1-24-



(3.21) 6 -1g(6)exp(26/E)- 0 as S - 0

Consequently, h(E) also satisfies (3. 21). Whatever the functicn

g(6) may be, this condition (3.Z1) can be satisfied by some choice

of 6(e). For example, we could define a function S(6) by

(3.22) £(6) = 261 log(g(6)) 1

This decreases mnotonically to zero as 6 - 0 because g(5.) does;

thus E (6) can be inverted to give 6(E) satisfying both

e 6 <1 and (3.21).

In tie case of greatest interest, where q(z) = zv (log z)', we

have g(6) = 0(log 6)-  by (5.7), so that the requirements for

6(e) can be satisfied with

65 "I -l -log log 61

This increases only slowly; i.e., equation (3.21) has forced us to

put 6(E ) rather near E

3.4. In this section we shall solve ( 3.20) for in the an.

6, it at arg is T (Figure 3.3). To bound the first bracketei

term in (3.ZO), we use equation (3.19) with s =

(3.23) ) exp- =(h) c 6-1exp(-P )

_ _ _-25-



The integrand in the second term of (3.20) contains A" , which is

bounded by (3.12). For the case q(z) = z' which leads to A",

it is already known, as will be discussed in section 5.2, that

equation (2.2) (with A and B constants) holds as close to

zero as It = 6, and that the connection formula (1.4) holds;

therefore, C defined by (3.10) satisfies C = GI(l) as E - 0,

and (3.12) reduces to

(3.24) Ay(t) = (exp(- p)

Substitkte (A), (3.24), (3.19), and (3.2) into the second term cf

(3.20).

f AY (s)[j(, s)p(s) - j (s, s)Y s- 1] ds =

f I(exp(- ps))[G'g(8 ))j( , s) + j(t,s) - jY( , s)]s-'ds

(3.25)

f [O(g) - 6- 1 e -  + &(h) E 6-1 e-P]Ys-lds

= 0(h) e 6-1e - q

The last term of (3.20) can be estimated by the same method as

in section 2, again using equation (3.8) . Define

(3.26) b(t ) = [A(t ) - A'Y( )] exp (pt)

J , -26-



then (3,20), (3.23), and (3.25) may be combined to give

(3.27) b( )= O(h)e 6 - I + f b(s)exp(p - ps)j( ,s),'(s)ds

Now substitute (3.8), and use the norm definition after (3.9) and

the fact that f (s)ds = o(l) f s-lds =t&().

(3.28) b(,)= 8(h), 6 + Ibl 1, O(E6-

It follows that

(3.29) b() = G(h) E /6

By (3.26), this may be translated back into our original terminology.

For the allowed in this section (Figure 3.3),

A( )-Ay(t) = 0 (h) 6-1 exp(-P@)

(3.30)

= o(h) E 6-1 exp (26/P)

Now equation (3.21) gives us the result, that AV( ) is a first

approximation to A(t). For t in the upper-left quarter-circle

(Figure 3.3):

(3.31) A() = AV (t) + o(l)

m-27-



3.5. In this section we shall solve (3.20) for , in the arc
1

I = 6, 0 S argt aj (Figure 3.3). That will give us the solution

to the connection problem. The first bracketed term in (3.20) may be

bounded by means of equations (3.18), (3.3), and (3.Z1).

[j(,tI) - jy(t,)]exp(-pt,)= t(h)j(t, )exp(-p)

( 0(h)[t0(l) + (pt)- exp(-pg)](3. 32)

= @(h)[0(1) + 0(E 6- 1 exp (26/E:))]

= o(1)

For the second term of (3.20) we start by substituting assumption

(A) and equations (3.16) and (3.24)

f A (s)(M(, s)W(s) - J(y, s)y s 1 ]ds

(3.33)

f t(e-PS)[0(g)j(, s) + (.o s)- JY(, s)] ys ds

By (3.Z) and (3.4), we can take care of the first term in brackets-

(3.34) j(t, s)e- =s ((p )-e-P) + 0((Ps)-le - p s

= (s 6-1exp (26/E))

For the rest of the bracketed expression, we deal separately with s

in each of the two quadrants in Figure 3.3.

1 8-.
'i' ir- - .7 ; F- . . .1 ,... . ..



FIGURE 3.3: Location of T for which (3.7) is solved

in sections LL and 5

"I "" ,, s IS. 5 ,,
- PI
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1

If s be in the right quadrant, 05 arg si 9 , then by (3.17)

and (3.Z)

[J( , s) - jy(,, s)]e- Ps = ct(h)j( , s)P-Fs =  (h)(ps)- e-  s

(3.35) 
= 0(h) 6- 1exp(261/)

1

On the other hand, if s be in the left quadrant, -Tjr : s S T, then

we must first split up j( , s), before applying equations (3.18),

(3.3), and (3.19).

[j( , s) - j Y(4, s)]e - ps [j(4,g 2 )exp(-P ,) - j(s.'e )exp(-p Z)]

- [jY( ,F 2 )exp(- ) (s,)exp(- p)

(3. = (h)j(t )exp -p ) - (h) E 5-1exp(-Ps)

)(hi)[E8 1exp(-p ) + 0 (1)] - 0(h) F 6 exp (- ps)

= e(h)[c & exp (26/-) + o(1)]

Now we can put together equations (3.34), (3.35) and (3.36), by

substituting them into (3.33). Then use (3.21).

f A Y(s)[J( , s)p(s) - j (4, s)Ys - 1 ds

= J (h) 6 ex (2S/s)s-ds

c o(I)
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Next break up the last integral in (3.17) into two parts, so that when

(3.32) and (3.36) are substituted, it becomes:

Y 18

(3.37) [A( )- Ay(-)] = o(l) + f [A(s) - Ay(s)]j( , s)p(s)ds

+ f t[A(s) - A Y(s)] j( , s)p(s)ds
16

The first integral in (3.37) can be handled with (3.Z) and (3.30),

the result of the previous section.

[A(s) - A (s)]j( , s)p(s)ds = f6(h(E))(e/t)e- sj(t,s))9(s) ofs

i&(h(C))(E/6) f (Y + o(1)) ((Ps)- e-Ps - (pa)-le- )s-lds

(3.38) t

= O(h(s))(E/6) exp(26/E)

= o(E/6)

In the last integral in (3.37) we may estimate j(E,s) by (3.2) and

the fact that exn(-pE) is smaller than exp(-ps) there, and we may

estimata q(s) by (A). The result is that (3.37) and (3.38) inply

(3.39) [A(t) - A () = o(l) + 0(F/8)I A(s) - A (s)I 1

It follows that in the quadrant studied in this section, and hence in
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the entire semicircle 5I = 8, Os argc ir (Figure 3.3),

(3.40) A(t) = Ay( ) + o(l) •

3.6. The approximation (3.40) for A(t) gives us the connec-

tion formula. It will be shown in Section 5 that

(3.41) A( r) A - 2B i sin (Y7) + o(1) (for - < Y <I)

Therefore, by (3.40)

(3.42) Ar=A 2 - 2Bzi sin (Yr) +o(I)

Of course, Ar and AI are the values of the modulation co-

efficient A(ti at t = 6(e), -6(6), even though we may really be

interested in A(t) for larger t, e.g., t = 1, -1. However, in

Chapter 6 it will be shown that, given a very slight strengthening of

assump':ion (A), Ar = A(l) + o(1), AI= A(-1) + o(l), and

BI = B(-) + o(l); thus the same connection formula (3.42) will still

hold wi-.h Ar = A(l) and AI = A(-l).

Equation (3.42) solves only half of the connection problem; the

other half is to show that Br = BI + o(l). Given (A:), the

strengthening of A in Chapter 6 Br = B(l) + o(l) and

Br = B(-l) + o(l). Thus it suffices to show B(l) = B(-l) + o(l). This

follows from the well-known WKB formula (2. 2) and the fact that
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B( ) is the coefficient of the dorinant term of (2.4), for positive

imaginary F.

Mbre precisely, we apply (2.2) twice to = i, once in a

region RL containing =-1 and once in a region RR  containing

1 (Figure 3.4).

The resulting equations are

ql/2w[ = [A(-I) + o(l)]e - I /E + [B(-l) + o(1)]e I /

lz--z(i)

= [B(-l) + o(1)]e1 / 6

q1/2 = [A(l) + o(l)]e - /  + [B(l) + o(l)]el/

[B(l) + o(1)]e
I / e

Therefore,

(3.43) B(1) - B(-I) + o(l)
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FDU:- 3>. Connectin- 3(-1) to 3 (1)
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4. Properties and Error Bounds of the Kernel.

4.1 The computations in Chapter 3 deoended upon equations

(3.2)-(3.4) and (3.15) for j(:,s). In this section we shall derive

those estimates, using assurption (A) of Section 3, but not the

restriction (3.18) on £(:). The first step is to compute

(41)J~ ~ = e- PS 9(s) ds

Assuription (A) suggests that we approximate ;(s) in (4.1) by x/s,

but in order to keep the error term sTmll we nuist keep the increasing

exponential factor exp(-~ s) under control, and that requires care

in choosing the path of integration and computing error bounds.

For the computation of j(t), the path of integration will be that

shown in Figure 4.1 . We have on the circle between = -

and r= 6, nottoo closeto ; i.e., ( = 6 and

Oarg ; T- 00, with (9o > 0. We build the path out of four

curves. The first is A, a vertical line drawn from = + it,

to %, the point with the same real part and a lower imaginary part,

= mt - %" ~R~'This is chosen so that im(s), and hence.

I exp (-J's)j, will be decreasing along A1 . The second curve is A,,
horizontal line from ^ to , the point with the same imagina..

part and whichever nonegative real part makes lie on the circle.

-35-
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That is, 1 = , : 0 and JI~ = 6 • This curve is chosen to avoid

s = 0, where p(s) becomes large, without resorting to an increase

in I exp(- ps)I • Then most of the magnitude of the integral in (4.1)

will come from near ,, where exp(- Ps) is biggest.

Finally, the third curve A 3 is the arc from to

tb = 6 exp(- Tr i/4) = 64T/2 - i 6NF-/2 and the fourth curve A 4  is

the vertical ray straight down to - i. These curves are chosen to

lead to a practically fixed point, with exp (- Ps)! monotonic. On

A 3 and A41 1 exp(- Ps)I decreases to zero exponentially faster

in s than Ip(s)l can increase.

Now we shall approximate V(s) by Y/s and split the remairnng

error term into four parts, one for each of the four curves A1 , A?#

A 3 and A . By (4.1)

Je : f e-PSs-ds + e f e-(s 9 (s) - Y)s 1 ds

1=1 Ai

Now change variables in the first integral and pull g(6) out of the

next three integrals

(4.2) j(Y)e " e = e - u u- 1 du

3

(g(8)) f- e p ssds

+ &(1) f I exp(-ps)(p(s) - /s)dsl
A 4
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This holds as £ - 0, tniformly for - on the upper semicircle,

The first term in (4.2) is the inconplete ganmn function,

7(0,Q). We may approxinate this by [Olver, 1974, page 110]:

(4.3) r(0,p)= f e- u du~ (pg)-exp(-p) as E- 0

uniformly for on the upper semicircle, not too close to Y i.e.,

6 and 0O arg, a - e (Figure 3.1 (a)),

Once we show the other four terms of (4.Z) to be smaller, this

will give us a simple formula for j( )

4.2. The first of the four error terns in (4.2) nay be esti-

nated by writing it in terns of real variables and integrating by

parts to isolate the contribution of the path segment near

where the integrand is biggest.

(4.4) I e-PS s- dsl Ji exp (- ip t)) it dt

exp(-iPi)[ p4 I - - -- ip(ti - )-lexp(iP(-

+ 'P-1 e~~ 3+ I fP J -  exp(i.t)(t i - t)j - it!- dt]

The first term in the brackets is I r/6 . The exponential in the
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second term is bounded because ip < 0 and - 0 . The deno-

minator of the second term is 'N

For , g we have + i i ,  so that '2t t

Moreover, for such 6, Tr/4 a argg : - - Eo  so that

(4.5) j/I z sin E > 0

Thus, I sin 0=6 sin °

On the other hand, if z :, then 0s arg S Tr/4, so -

(4.6) alIl cos(-/4)= 1/'-Z

Therefore, I I i I/4-> I (sin e )/Z =6 sin

In either case, the second term in the brackets in (4.4) is

(4.7) -I '-eyp (ip(i - p) 1 1-1-(1)

()16 sine 0 ) 1  (1) L/

For the third term in the brackets of (4.4), we

examine the quotient in the integrand, ( i - t) - it i 3. If

then

It - itl Z. jIm( - it)l =  "

Therefore, and by (4.5),

-38-



(4.8) (t- t) - C-  1 -3 -Z I- Z  0(6- 2

On the other hand, if i then we may use (4.6).

(4.9) (ti- l -it, -311 3  I I 3) :  (6-Z) •

Substituting these bounds and the definition of p = 2i/E into the

last term of (4.4) shows that

(4.10) PI- exp (ipt)(t, - t) - itl- 3 dt

= 0(E6 -  exp(ipt)dt (E/8) (1 - exp(ip( -ti))I

0

= 2(6)

This completes an estimate of (4.4):

(4.11) f le- Ps s-dsl = exp(-iPti)[I&(E/6) + i(s/6) + O(E/6) ]
"A1

= 0((p9)- exp (-P ))

and the first of the four error terms in (4.2) is

(4.12) o(g(6)) [I exp(- Ps)s- 1dsl = 0(g(8))(p ) lexp(-P)AR1

= o(p ) - exp(- Pt)
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This summary error bound is good enough for our purposes because the

first term of (4.2) is, by (4.3), approximately -( -)1 exp(-j).

It takes care of the biggest of the error terms in (4.2), because

the exponential factor in the integrant is biggest near .

4.3. The second of the four error term in (4.2) can be inte-

grated explicitly as follows.

f I exp(-Ps)s- dsj = exp(- ip 1) f t4+ -d
A 2 p

A ^ t= gtal
(4.13) = exP(- ip1)l log(t + It + iti )It=

= exp(-ip4')llog[(e+ I (I) - + I V)W

To get a bound for (4.13), we look first at the deninator in the

logarithm. For :9 0, = + Iit so that

2t sin Go

and

(4 .14) + I ' -- = ((I + I h -( I 14 - 2 )2

1- 1 Z1-1 l t 1 1 (sin e,)2/8

_ _ - --40-
7"" . -, - - - ""' 

' '
.. . . . . . . . . . .... . . ..



This bound also holds if 2: 0, for then

(4.15) + l 'f I!> I (sin E))2/8

These two inequalities, together with (4.5) and (4.6), can give us

an upper bound for the quotient in (4.13):

(4.16) ( + 'I)-(t+ tI) (I (sin %) z/8) ( "I )

1(sin e) -Z 168 , (-6 sin eo)- (sin %)-?165

=32 sin- 3 e

We also need a lower bound for this quotient. First, if 4 pis

then = + jii , so that

I1 1 = 8 I 1 ti •

But = + i^I hence, k (Figure 4.1 (a)). Therefcre,

(4.17) (QR + " -( ' t + I 2" (tP + 11'{)-l (tR+ 1'I:I (sin c3 /3:•

On tie other hand, if ER z ti, then

v11I 1 C 8
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Consequently,

Therefore,

(4.20) (g + i 'I~l ( 4 I ) (6 + 26)-lI = 1/3> (sin E)/32

Now that we have both an upper bound and a lower bound for this

quotient, we can estimate its logarithm.

(4.19) jlog[(g -+ )-l(+ 9))I

= max (log [R +  - +  Alog[(+ t'+)( I I) -1]

< log[32(sin 903 ]

From (4.13), therefore

(4.20) fd exp-Ps)s-d I < exp(-iPti)log(3Z sin 3 eo.

But tj is bounded below i For, if %2s t,, then by (4.5)

I sine 0 =13 6sine .
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If 2R- i then by (4.6),

Therefore, (4.20) gives us room to keeo the integral srmller

than an incomplete gamma function:

(4.21) f Iex(-ps)s-ds! = (exp(-ii 1)
A 2

= 0(exp (ip(-6 sin o)))exp(- ipi)

= &(exp(-6/e))Iexp(-F,)I = o(p )-elexp(- p ) •

This shows that the second of the four error terms of (4. Z) is smaller

than the first term of (4. 2).

4.4. The third of the error terms in (4.2) if readily estimted

by repeating the computation of (4.21):

(4.22) f Iexp(- psls-ldsi a exp(- )i8 1 f IdsI
A 3  A 3

:6 ex4P(- 1 i^ 8 I (ir 6/4) = T1 exp(- ip')

= O(pt)-I exp(- pa)

-45- "
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The last of the error terms in (4.2) is the reason for

our assumption that 9( ) = O(er  I) as t - - i- (Chapter 2)

The other end of A 4  is b= Sexp(-Tr /4); there, Q( )=GO(l/&)

by assu1notion (A). Accordingly,

'A Iexp(-Ps)(9(s) - Y/s)ds! =(/)f Iexp(K Is - ps)dsl
4 A 4

I. -1(l/6) f exp((ic + ip)t)dt = %(1/6)(-K + 2/) exp(( - Z/s ) 6)

= 0(/6)exp(-Z6/E).

But the t which we are considering here have positive ima-

ginary p rts, so that pt has negative (or zero) real part, so

exp(- 26/s ) = o(exp(- p t)) exp(- 26/E) = o(exp(- p)).

Therefore,

(4.23) f I exp(- ps)(9(s) - /s)dsl = (pt)-exp(- p )o(exp(- 26/)
A4d4

= o(p4)-lexp(- pt)

Now substitute into equation (4.2) the equation for its dominant

term, (4.3), and the equations for its four error terms, (4.12),

(4.21), (4.22), and (4.23). The result is:
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(4.24) j(t)e -  - e- s(Y/i)ds + e(g(6)(-)e

+ 6(exp(-26/c ))(pg)- le-4

- ja

= (I + 0(h(E))) f e-ps(Y/s)ds

(Y + o(}))(Pg) e

This holds uniformly in on the arc I 5 I = 8, O• arg s -

(Figure 3.1 (a)).

Substituting this into (2.12) gives an equation for j( , s)

(4.25) j(,s)e p s = (I + o(h(e))jY( ,s)e - p s

= (Y + o(l))[(ps)- e- p s - (P )-le-pi

This holds uniformly in and s onthearc I =I js 6,

with O& arg 4 i r - o,0 it args e - e0 (Figure 3.1 (a)).

4.5. We still lack an estimate for j( ,s) with E or s near

where (4.3) fails because , is a sector boundary of that

approximation. By (2.12),

(4.26) r e - = rr e-PS (s)ds

'I I_-_47-



and by (A),

(4.27) P(s) (Y/s) + (a(s)/s)

with g(s) - 0 as I 0.

In the lower half s-plane, is has positive real part, and the

exponential is small, but has a possible branch cut along the

negative imaginary axis (Figure 2.1). Write the upper semicircle

(Figure 4.2 (a)) as the sum of curves L and T (Figure 4.2 (b)).

Then

(4.28) J( ) exp (- ) Y e fL e -s s1ds

+f e-PS,(s)ds + f e-PSa(s)s- ds
r L

The integrand of the first integral in (4.28) has only a sinple pole,

(4.29) Yf e-PSs-lds= -ZriY
L

We shall show that this is the dominant term of (4.28); the second

term has a decaying exponential and the third term includes g(s),

which is small.

The second term of (4.28) would normally be shown small by

Jordan's lenma, but the standard forms of Jordan's lemma do not cover

this case. Break F into three parts, as shown in Figure 4.2 (e).

Because P is holomurDhic, assumption (A) implies that on TI ,
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(4.30) dq(s)/ds = Cz(s - 2 )= ((6 - 2

Therefore we can get a useful error bound by integrating by parts.

- P -,-s a_ I-lePS¢(~~

f e - p ( s )ds = Ple-PS (s) - e (s)

(4.31) + p-1 f e-PS ,(s)ds
r1

For the second part,

Ira(s) :g - 6/z-

so that

(4.32) f e-PSp(s)ds = C(exp(-%r4(6/))) f ~l(s)dsI = o(E/6)
1'. r 2

For the third part, we use the assumption that p grows at most

exponentially as s - - im, and assumption (A) for s - 0.

(4.33) [f e'P(s)dsI a 26- fexp((K - 2/e)t)dt = 0 (E/6) .
r3  6

Combining (4.31), (4.32), and (4.33) gives a bo rd for the second

term of (4.28)
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(4.34) f e- PS(s)ds = (6/6)
r

In the third term of (4.28), the exponential factor in the integrand

can grow. We shrink the circle in L from a radius ' to a

radius E (Figure 4.2 (b) and (d)); then on the resulting ne, curve

L, the exponential satisfies

4.35) , exp(- Ps)I i exp(-piE) = e2

Thus the third term of (4.28) is, where L1  is the circular part of

L and L., the straight part,

(4.36) f, e-'S (s)s- 1ds f e-oS)s-l1ds
PS a-s)s I Ps- P-1

=ds + e e (s)s ds

L z

E(g(s)) + f e-P s g(s) s- ds

In 12, the last integral of (4.36), i(s) is small where

exp(-Ps) is biggest. However, standard form of Watson's Lemma do

not apply.

Let g4(s) represent the value of g(s) on the right edge of

the negative imaginary axis and g_(s) the value on the left. Then,
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(4.37) I = f. exp(- ps)(g_(s) - .(s))s- ds

With t = is - and p(t) _ (s) - +(s),

(4.38) 12 e-Z f exp(- 2t/Z )(t + C) -p(t)dt

No i we break this integral into three parts. First, consider

t - I. Then because w(s) = C(exp(K ,s:)) for s - -i-,

also p(t) = O(exp(,Kt)). Therefore,

f e.xD(- 2t /E )(t + E )-lp(t)dt 9f e:p(( - 2/E )t)dt

(4.39)
= (2/E - ) exp(rK - 2/E)= O(E) exp(-Z/s)

Second, consider 16 % t s 1; in this interval,

z

Ip(t)1 S 2g(ItI + E)S 2g(l+ E)< Zg(2)

(t + E a) (1o + E )1 < Z6-1,

exp(- 2t/E)(t + E) -1 p(t)dt c cq(6) - I f 1

166

(4.40)

= G(E/6) exp (- Z6/E)
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Lastly, consider 0 a t a 6 • Here,

jp(t)l 1 2g(t! + E) I 2g(1 5 + E)= 4g(6))

!618Z --1 1
20 exp (- '2t/F-)(t + F)-Ip(t)dt i(g(6)) exp (-Zt/s)dt

0 0

(4.41)
= )(g(5))•

Finally conbine (4.39), (4.40), and (4.41) to bound 12:

(4.42) 1z2= 0(g(6)) + (6/ 6)exp(-26/a)= o(1)

From (4.42), (4.36), (4.34), (4.29) and (4.28),

(4.43) j(r, Z )exp(- ) - 2i Vy + 0(g(6)) + (E/6)

=-ZriY +0(l).

4.6. Besides computing j(trt), we must find out how

close it is to j (r )  By (4.28) and (3.14),

(4.44) 0 (r,t)- j'y( r, t exp(-gp4 ) f e-PSg'(s)s- ds

+ f e-PS (s)s- ds

L
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By (4.36) and (4.42), the second term is

(4.45) f , e- P s (s)s - ds = (g(E)) + 0(g(6)) + C(E/6)exp(-25/E)
L

& @(h(E))•

For the first term of (4.44), we use equations (4. 31), (4.32), and

(4.33) with a(s)s in place of p(s). Because a is holomor-

phic, on r,

(4.46) dg(s)/ds= @(g(6))/6

d-S S (g(6)6-)

Substitute this into (4.31) to find that

(4.47) -Ps (s )s-1 ds = @(s -g(6))

If g 1;- substituted for p in (4.32) and (4.33), we get

'-Ps- -11
(4.48) f e-  g(s)s-1ds = o(e6- g(6))

(4.49) f e-PS a(s) s-ds = &(E6- g(6)).
r3

Therefore,
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(4.50) Y - , exp= s(h(E)) + (S6-1 g(6))

= &(h(P))= C(h(E))jY (r, 2)exp(- p Z)) .

4.7. Equation (4.43) leads to a nmre general equation. Add

j(EEr ) and use (2.12) and (4.25),

(4.51) J(g,)exp(-p ) = (Y + o(1))[(g)-le=( .r)

- (p)- 1 exp(- p#) - 2r i]

as e-0, uniformlyln g onthearc I 5 = , 0 arg% -0

(Figure 3.1 (a)).

This has still not dealt with j( ,s) for $ and s

both near . Next we shall find a bound for

for near ; i.e., w - s arg T -w By assumption (A),

V(s) = s- 1) uniformly. Therefore, if we perform the integration

(2.12) on an arc of the circle sj = 6 and set t= IM(s) (Figure 4.3),

(4.52) J, )exp( pgj) ic fg exp(- Ps) (p(s)dsl

= )() I exp(- Ps)s- 1 dsl

=() fo exp (-ipt)(6 - t ) dt
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Now, because T - e 0 arg s -1 T, we can bound (62 t

as follovs:

0:9 t = Im(s) = 6 sir. arg s = 6 sin (-r - arg s) s 5 sin e.

(4.53) 62 - (62 - 2 (1- sin2E )

Sabstitute this into (4.52).

(4.54) j(, )exo(- o(5) - 1 ((

) -exn (- ipt)dt
0

-lp
_- @(E!6)exp(-ig,) = ¢.(p )-exp(- %)

But by (4.51) this bound also applies to any g on the arc

19 1 = 6, %o g arg - 9o (Figure 4.4) • Consequently,

(4.55) j( ,%)exp(- F) = %(f%) exp(-p% ) as E - 0

uniformly for onthe a.c = 6, 00  arg :z (Figure 4.4).

Now use this equation twice, to subtract j(s,r,)ex(-p )

from j(:,, , )e:p(- P ) . By (2.12), for , and s as in (4.55),

(4.56) j( , s)exp(-ps)= t(p )-exp(-p ) + s(ps)-l exp(-ps)
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These are both increasing exponentials in (4.56) . If we restrict

and s to the left half of the semicricle vith
1

:9 arg : arg s g r (Figure 3.1 (c)), then the first term dominates,

so (4.56) reduces to

(4.57) j(t, s)exp(-ps) = L(p )-exp(-p ) as e- 0.

4.8. To conplete the proof of the estimates (3.17), (3.18)

and (3.19), which were essential to Section 3, observe that (3.17)

is the same as (4.25). For equation (3.18), add (4.25) with s =

to (4.50).

To get equation (3.19), we rust nodify the coputations in

section 4.7. First, subtract (2.12) from itself as follows.

(4.59) [j(j, 2 )- j Y(tl)] exp (- 1) f exp (- ps)g(s)s -1 ds

C(g(M) f lexp (- Ps)s-lds]

The last integral also appears in (4.52) and was bounded in (4.54),

by

(4.60) ( Iexp- = -

Therefo -e,
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(4.61) [j(,)-JY(, ).xp (-,) = C.(g) E exp(- p)

Again subtract (2.12) from itself, and apply (4.61) to the result.

[J(, s) - j (,s)J exp (- Ps)

(4.62) = -2) - xp - 1) - [J(s, 3 z) - Y(s, e -;

= S(g) £6 exp(-p;) + ,(g) E - exp (- ps)

1

But equation (3.19) is required to hold only for I 1T :arg[ z args :z

(Figure 3.1 c); there, exp(-ps) ! exp(-pt). Thus, (4.62) reduces to

(4.63) [j( ,s) - J %,s)]exp(-ps) = S(g) E 6-1 exp(- P)

which is equation (3.19)

4.9. In Section 6, where connections are made for on the real

line, we will need a bound on j (,s) for and s real, with the

same sign. Since o(s) is holomorphic and cp(s) = %(s- ) as I sl - 0,

for all s not on the negative imaginary axis, the bound do(s)/ds

= O(s- 2) holds for real s - 0. Therefore we can integrate (2.12)

by parta:
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s~-Ps P1 e- t (t)i + P (e Pt 't)
s

= s (Et -  + Ut d t-tdt

ss

if 6, :c I I, I s I :z 6, + 1, then this implies that

(4.65) M .g S) : ((
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5. Corpletion of Close Connection.

5.1. We shall corpute :(C) when q(z) = z log'z (- -I)

near z = 0 to show that asstnmtion (A) of Section 3 holds for

such q(z). In this subsection, we use the notation log-z = (log z)

and asymptotic relations hold as z - 0; i.e., 2 0.

(5.1) q' (z) = z V- log z (v + U log - z)
-1 zi-l

z q(z)(v + log- z)= z q(z)(v + o(l))

Substitute this into the definition (2.7) of (

1 - , 1 -I-1 -1(5.2) f -q q T z q (v + 4 log z)

I (zq)- (v + 0(i))

To compire this with assumption (A) we must write z q in terms

of . Integrate the definition (2.3) of E by narts and use

(5.1),

(5.3) zq- q'zdz

:zq - - &(log z) f q(z')dz'
0
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To see that the last integral in (5.3) is of the same order as

set z= r exp (a) with 0 < r < I and write as:

r r
(5.4) fr s'V(lg s + i a) d s ~f rs' log s ds;

0 0

(log' r) fr j og4 s ds,
0

= (1 + 0 (log - r) )fr s 1g log s ds!
0

=(I + (log - I r) ) fZ q(z') dz'
0

Therefo'e, (5.3) says that

1

NtAbi (5.2) and (5.5) irrply assurntion (A):

(5.6) I= (1+ v)- 1 V-I(I + 0 (og - 1 Z)

= "(I+ V)- I 1V _ (I + o(I)).

With (5.5) and the definition of g(z), this also gives us g(5):

log 4 + o(l) = log z + log q = (I + v + o(1)) log z

(5.7) g(6) = (log - z) G (log - ' ) = 0 (log - , 6)
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5.2. We need the connection formilae for A",

that is, for

(5.8) q(z)= z v  (v >-),

we must obtain the equations

(a) AY(1) A¥(6) + o(1)

(5.9) (b) AY(-1) =A (-6) + o(i)

(c) A () = A(-I) (-1) 1Zi sin (Y.) + c(I)

where

(5.10) Y v (Y + )O < Y <

When (5.8) holds, the solution w(z) to (2.1) is

explicitly, in terms of the Hankel functions H(  and H.

(5.11) w: CXH ) (/ + ()

where C1 and C2  are arbitrary constants and

(5.12) = I +) -

~(v + 1) 2
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The connection formulae will follow from (5.11), (2.2) and the

appropriate formilae for the Hankel functions. It is known [Olver,

1974, pp. 238-239] that

(5.13) (a) H ( /) AE 1/2 1/2 exp(ia/E)

for -- + e 0 -s arg a 7 , as 2! E)

(b) H(2 a) A2 / C312 e-xp(_it/E)

for -r : arg a -s - 0 , as /Ei - (5/)-

((2)

(C) Hx(2  t /E) =Hk I ) ( exp -, i)/F-) exp (k i) +

+ HR z ) (%exp (-i)/E) 2 cos 7-,)

with

(5.14) A,= (Z/T) / Z exp(- -iTr(X+ ))

1/2A= (2 /T  exp(y i, (7 +T))

We can substitute (5.13) (a) and (b) into (5.11), and this can

be cornared with (2.2) because

- 1/2 X-1/2
(5.15) q (constant) a

by (5.8), and (5.9) (a) follows.
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Equation (5.13) (1) does not cover the negative real numbers

which (5.9) (b) and (c) need, but we can extend it by using

(5.13) (c).

(2i/2 -1/2

(5.16) H ) (t/) - 21 A2 E 1 cos (%T) exp (it/E) +

+ IAI E / exp (VT i) exp (-it/E)

Now equation (5.9) (b) follows from (5.16), (5.13) (a) and (5.11)

For the last part of (5.9) we combine (5.16), (5.13), and (5.11)

once more.

A(1) = IA I/

(5.17) A(-I) C I 1/ +C 2 i/COS(xr)

1/2
B(-1) C iA1  exp (7ri)

Therefore, by (5.17), (5.14), and (5.12),

1/2
A(1) = A(-I) - C2 Zi.A cos (X7T)

= A(-1) - B(-1) (A1 z  exp (%7Ti) 2A? E cos (7T)

= A(-I) - B(-I) Zi cos (X7-)

a A(-I) - B(-1) 21 sin (y7T)
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5.3. In Section 3.2, we had claimed that the method cbere u-sL' ;

could be carried out more precisely to corrpute A(.-) instead o<

just bounding it. To do that, take n= 1 arz
d d2  a...

= (Figure 3.1 (d)) and define

I a( )= f a(s) j(,s) exp(p - ps) p(s) ds

In Section 3.2, we had shown that

(5.18) Hlz all

With

(5.19) a a()- a2 exp (p - pt

ecuation (3 7) may be written as

(5.20) a,(9)= BIJ(tItI) exp (pt- pt + IE a(t)

To use (5.18) to contract (5.20), we need IC a () and, in turn,

I exp(pP). By (3.4),
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:exp pa) exp (ps) j ( , s) exp ( p - ps) ds

= ( )W- f/ iexp (ps) p(s) dsl

-1

By (A), p (s) = 1(6 -) • Therefore,

(5.Z1) I exp (pa)= (6 P f exp (ps) dsl
t I

Set s= 6 exp(i(--))) (Figure 5.1) and use the fact that

sin > for I to compute

(.7T - arg )

IS exp (p)= (6-1) f exp (-26 E- sin E)) de
0(5.22) 

-1,2

< (E56) f exp (-6E e) dE) = 0 (E/6)
0

Therefore, if we apply I to (5.19) we will getS

(5.Z3) IE a()= E a,() + a exp (-a) I exp (pt)

= IF al(g) + O(E/6)

If we su stitute this, (5.18), and (3.4) into (5.20), we get a

bound on al(),

-70-
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(5.24) al( )= & /(E ) - [S ('/6) + IE a I)
I

=&(E/6) + (E/6) Ila ! 1  "

Therefore,

(5.25) a ( ()/6) •

This holds uniforrmly for in the left quarter-circle

Iy7 i_ arg t -i , (Figure 3 .1 )) . Now substitute (5.25) back

into (5.20), using (5.18) again.

(5.2 6) al(t)= B I J( -, ) exp ( pg- p + &(E/6) 2

(.6)

If we require Ir _< arg g - r -eo (Figure 3.1 (d)), then we can

use equation (3.3) for

(5.27) a,()= I)(Y+ o(I)) U Ad - I exp (pt- p r) .(p)

-27 iexp (pt)] + (E/6)

But for 1 r :s arg 4 -- -T - e0

exp (pg) = 0(e/6)2

so the second term in the brackets dominates and we are left with
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(5.28) a1 ( ) -B (Y + o(l)) (p) •

Moreover, the first term in (5.19) dominates for exactly the same

reason. This gives us the equation we had sought:

(5.29) a (g)= -B, (Y + C(1)) pU)-  as E- 0

1

uniformly for 5-T -< arg , -s ;T - 0 , = 6 (Figure 3.1 (d))

In terms of the original moculation coefficient A( ) , (5.25) and

(5.29) say that

(5.30,) A( ) - A (s6) exp (-pa)

= O(p,) - exp (-pt)

uniformly for in the upper-left quarter-circle, I 6,

T s arg :s 7r (Figure 3.1 (c)) • Moreover,

(5.31) A(9) = -B I(Y +0(l) (p4) - 1 exp (-pg)

uniform for in part of the same quarter-circle, the arc

Itl = 6, L arg t -s -T - e0  (Figure 3.1 (d))

Sinc. exp (-pg) increases as Im (t) increases, this says tlat

A(g) inzreases in magnitude as moves from I around to

4 = 16, the halfway point between 4 and g (Figure 3.1 (c))•
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For bounded away from by a fixed angle, A( ) increases

almost exponentially in (6/E) as s--0 and, hence, ( 5 /=)-0 .

However, our choice of 6 = 6(s) may typically have

(6/E) - logilog Ei , so this "exponential" increase in A(,) may

actually be rather slow because approaches zero so fast.

For t very near to , equation (5.31) does not apply, but

we can use (5.30). If stay near enough to g ; for example,

if the angle between and be no more than (E/6) , then the

right-hand side of (5.30) is small, so that A(,) is approximately

equal to A I
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6. Connection from Near Zero to Far Away.

6. 1. We have obtained formulae connecting the modulation

coefficients A(,-) and B(s') at = = - to those at

r = 6. But 6= 0(:)-O as 0, andwe might really

want to connect points which are much farther from zero, e.g.,

=L = -1 and = = +1 or even F L = -106 E and

= exp(J
1)

' R

The obvious aproach to connecting the coefficients at

to those at R is to connect to along the negative real

axis, .7 to Fr by the methods of Sections 2 through 6, and then

to R along the positive real axis. The WKB solution, A()-

constant, BC) constant, is well known to be valid along the

negative real axis and along the positive real axis (subject to some

integrability and boundedness conditions at + e) so long as F is

bounded away from the possible singular point 0 0. This is good

enough to connect from points like R = exp(c-) to fixed points

like FR = 1, but we still need to push on to r = ( c )

This raises the question, how close to zero is the WKB solution

really valid? If we could extend it, for real numbers, close enough

to zero, then and IR would be connected to and Ir' and

the problem would be solved. We shall now show how to carry out

such an extension in mst cases.

One approach is to imitate the method of Langer (1931).

Although he studied only the case where q(z) - z" at zero, and
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obtained an asymptotic formula good at z = 0, his mthod can also

be applied to the general case to get a weaker result. For q(z)

as was described in Section 2, and for real in R., it yields

= (E)sup{j (d /d-)-2 2 :I> (E)

uniformly fcr <-

(6.2) A()-A (1) 0()sup{j (d;/d)-2;2 :

IB ()-B (1) j (e)sup{i (d /d,)-2 I2  > E:

untfornly for : > A (c)

Thus, Langer's method can extend the WKB solution to a distance

A(s) from zero, with A(c) - 0 as E - 0, provided that the

right-hand sides of (6.1), (6.2) approach zero as s - 0.

How useful is this? Suppose that assinption (A) of Section 3

holds in addition to the assuxptions of Section 2. Then because

= (- and i is holonurphic, (do/d ) = Nc-2) on this real

line; therefore,

(6.3) (d/dC) - 2 2 = G( -2) as C$j -0, uniformly.

Thus the condition for this extension method to work is
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(6.4) C A 
(

C 2 _, 0 as C - 0.

This allows us to take .( = E with a< for examzcc.

But such '(-) will not be good enough; we must extend the

WKB solution still closer to zero. As noted in Section 3.3, '1 --micai

1interesting () would have 3/c = logllog ; hile if

,( then = (25) (logliog I) - >> 5.

6.2. To connect from = -1 to and r to I we

will again use the integral equation (2.13). Besides the assurmtions

of Section 2, we will use a weaker form of assunmtion (A), Section 3

(A') (U) = N-i) as Icl - 0, uniformly.

Since 0 is holomorphic, it follows that for real ,

(6.5) , ( ) = ( -2) as ki - 0.

We shall start by connecting between ±6I () and +± ()

where i 5 1 - 2' and

(6.6) £ 61 (log(6 26- 1 ))2 0 as C ) 0

Equation (6.6) keeps S and 52 from being too far a-
1 2

part for us to control integrals ranging between

and 62"
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Write equation (2.13) and its equivalent for posi-

tive r, equation (3.5), as follows:

(6.7) A(Q) - A1  B1 j Q 1)exp(-pl) + T A()

where

(6.8) T A( ) = f (s) A(s) j (,s)ds

and where

(6.9) A1 = A(,), B B B( 1 ) , 1=

When = + 6 1 , we take I -  
._ 2

when = - 1 then - 62 - -i "

We can bound TC by means of (A'), (6.5), and (4.65). Let

1 IL represent the sup norm on the interval over which , ranges.

IT CA( ) I flAll' lii IL is- lK f1

(6.10)
jI Al1. G(e/51 ) log 62, = I All. o(l)

Therefore T is a contraction for sufficiently small

e, and (6.7) has a bounded solution. Substitute (6.10)

and (4.65) into (6.7)

(6.11) A() - A1  = (E/6 1 ) + II All. G(6 1 1 log(6 2 i))
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Therefore 11 Aill is bounded independently of E ., and hence,

(6.12) A() A1 + S(E5 log= 1 + o(i)

... = . 3 and 1  2

uniformly for between ±i - 1 a 2

To compute the other modulation coefficient, B(E), integrate

equation (2.8) by parts and use equations (A'), (6.12), (6.5), and

(6.6) and the fact that the integral is computed on a real interval.

Ps
(6.13) B( ) - B 1 = f 4(s)A(s)e ds =

11

-Sds+ f * (s) ( - A 1 ) 'se

-2
= &(E/6 I ) + (e) f S ds +

-l 1 -

+ t(e 61 )log (6 2 /6 1  f s ds

= (C/6 I ) + L(E/6 ) + M(E l) (log(62/61

= o (1)

~ ~ 0



W e -I o n s and -i- ,

s(* ) s(* - (I)

* . .J. c P.. . .;... .• d r c y <

We cann-~ot us _ _ons ('.,2) -ar, (6. '4) d ec 1 . ..

in Section .2 , r:rd lrr trr c o - c '

In the case q (z) z (log z) , we typically wil c'.s-:
-1. 1

-l =- og g0 !1 Suppose that we tried to use

'6.[2i .:/ . 4) by e t n 1(E) = 5 ka) , 2 (k) =

Then we would find that

1 2 -1 * 2..1¢ a -I log (21 = 2(log: log S log

y, , jniti ion (6.6) v-)iAd be iiolated.

Instead, we will CP.oose a finite sequence

IS <:: , 5 ({ ) < . . < (_
-- - n

for whIch, for L = 1,2,... ,n-I

-1 !°2 -1 - o as)*il lo 2( 0 as + O

'. 12) anr (6.14) -in apply, sn that o ]ir ,

-- i w.,aiately.

.... , we becin with an example. Let



2 -L og

Define K1 24 as follows:

(a) 56 =

(6. 20) (b) 2 = exp (log (2) 1) 1/4

(c) = log 3 ( - !

(d) 54 = 1

Here we are using the notation

2 2 (2) lglo
log x = (log x) ,log x log log x

or, more generally,

log(n+l)x = log log(n) x

(6.21)

log n+x = (log x) (log nx)

It is obvious that 5l .... '4 defined by (6.20) sat-

isfy (6.17). To see that they satisfy (6.18) we start b'.

putting F more explicitly on the right side of (6. 19).

Divide (6.19) by 5 and apply log.

-_ 1 (3) -l -'

lcgE i_ log6-1 + log I + log 1 = (l+o (1))log S

(2) -1 (2)-1'(6.22) log c = o(I) + log 6 = (1+o (1)) logs

1= log 2  = (2 + o(1)) log (2)

2



Now substitute .,2 .

-1 2 -1 (2) -1 - . ...
6 log Fi ((2c

(2+o(1)) (1o*(2) -1 -1 (2) - 1 1/4_

- S(l) - log(3)-112

= (2+o (1)) (log(2) -- I (log( 2 ) -1)1/42

=(2+o(l)) (log (2) 1/2- 0 as

Thus (6.18) holds for i I and 2'

Next substitute (6.20 (b), rc) ) :rto (6.18)

-1 2 5 2 )  ex[log( 2 ) - I 1/ 4j log( 1 3 -1 2
E62 log 1532 ec -lg lg( .3 ) -og (E: 2)

(2) 1) 'exp [ (log -i /4] 3 log ((-!)_ (log(2

- (3+O(1)) ex [-(log(2) 1)1/4 iog(2) -1

as _ 0

Thus (6.19) holds for 3and

Last, substitute (6.20 ( d), (d ) into (6.18).

-31log 2 I-' 1 )  -3- 1 (2) 112

3  l 5 3 og (E- ) Ilog E - 3 log E

-l -l
- (i+o(l)) log- I 0 as C- 0

Thus conditions (6.17) and (6.18) hold in their entirety

so that (6.15) holds for this example of primary interest.

At



6 .4 We now ,i*.,e another exampl e one for whih w

cannot prove (6.15). It indicates that we need a new

assumption ;n order to prove (6. 15) , and it suggests what

form that assumption should take--a slicht strneninc a:

assumption (A).

We shall construct a function f (.) which grows to

infinity as 6 - 0 more slowly than any iterated logarith--m

(n) - 1 !(
log S)-  It is conceivable that some O( ) =- (y

+ o(l)) satisfying (A) might have an error term so large
-1.

that, to satisfy (3.21), we must have 6 6 < f(d) or

f(j). W2 shall show that, for su:h a case, the method of

qubsection 6.3 will not work, so we cannot prove (6.15) for A

First, we construct f(5). For N = 1,2,3,... define

f 1 (6) = log 6

(.23) N+l () if fN() < N

log fN(6) if fN () > N

For any given (0,1), log fN(S) < fN(5) , so there

is a finite N = N(s) for which

fN-l(6) > fN(6) = f N+1 =(..

Therefore we may define a limiting function, shown in

Figure 6.1.
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(6.24) f (0) lim f N() ( ) (6 log (N(6)5-1N N = fN(S)

Note that N(6) increases to infinity as 5 0, and that

by (6.23), f (6) < N(6). Equation (6.23) also gives a

lower bound to f , for if N = N(5) then fN = lo N-i '

so that f N- > N-I. Therefore, fN > log(N-l). in

summary,

(6.25) log(N(S) - 1) < f (6) < N(S)

We make f monotonic by defining

(6.26) f(6) =sup { f (6') : 5 < 6' <1}

Because f (6) - as 6 0, the same holds true for

f(6). How fast does f(6) grow? Let 6 < 6' < 1. Then

by (6.25),

(6.27) f(') < N(') < N(6) < 1 + exp f(S) =

S1 + log(N (6) - 1) 1

Therefcre

(6.28) f(6) < 1 + log(N ( - -

For any fixed N, (6.28) and the fact that N(5) imply

that



(6.29) f(6) << log(N) - as 0

With this very slowly growing f (I) , we define (-)

first define (5) by

(6.30) E = f ()

and then invert to get 5 (-) (defined for all small _ ex-

cept for the jump discontinuities at 5 1 = i/f 1,

, 1/3, ... ). This 6 (-) is extremely close to , but

it still satisfies (2.14); that is, E << 5 << 1.

There is now so much distanze between (E) and 1 that

we can't connect across that distance, using the method

of subsection 6.3. Suppose that we try to do so, i.e.,

that we construct a sequence like (6.17) and (6.18) and

try to use it to make a connection. We shall show that

our task would never end; that however large N may be,

aN(E) < < 1 as E -? 0.

Specifically, we take a sequence 61, 32' 3' "

which satisfy (6.17) and (6.18) Dr even a weakened form

of (6.18), that is,

(6.31) <() = 31 (c) <_ (c) < 3 (C) <...

(6.32) C 6i. log(. - as +i0a.i 1



Then we shall snow bv ... n that -e fcsowlnt.

equations hocld, for all 1:

6.33) - 0 as E -£ 0

-2 (N) -i

6." ; .- < < log s as -0, for each fi xed N.

Equation (6.33) is the result we wanc; (6. 34) is a neces-

sary intermediate step in thne induction; it says that 5.

can't get var.' far from E.

Equations (6.29) and (6.A0) take care of the case

i = 1. If ((.32) and (6.34) hold for some i, then by

(6. 32,

-1( i-I )

(6.35) log( i  ) o(6.

Exponentiate this equation to get:

(6.36) 6iS l < 5 i exp(5 i z - 1 )

By (6. 33) and (6. 34) with N = 2 :his im )lies that

(6.37) 6i+1 < & exp(log (2)-16.) 6 i logo. i 0

Now that we've shown (6.33) for (i+l), equation (6.34)

remains.

I. -I



Choose any intecer M > 1, and require . to be S

small that

(M+3) -Ilog . > I1

By (6. 3e6 and (34 wIth (.M+2) and (M+3) in m;ace :r

N,

-l - 1  -l(6.38 6- 6 " i i)p E <

(M2)-i (M+3) -li)

< (log (M+2)i) exp (log ( 1

S(log (M+2) il )2 < log iM+l) i

By (6.35) and (6.34) with N = 1

(l i1-1 -l

(6.39) log 6 i+l= log di + o(di ) (l+o(l))Loc 5.

Apply log(M-l) to equation (6.39)

(6.0) lo -l (M-I-1 1 (M) 5-1

(6.40) log 5& i+l (1 + o(l))I.og(M)5Tl > 1 log

*0 (M+l) -->> log (MI)4?

Combining (6.38) and (6.40) give,, the result we had sought:

(6.41) 
6 i+1 << log (M) 6- 1

m l mmi+l



6.5. Subsection 6.4 indicates that we .il lot be

able to solve the connection problem full, if7

extraordinarily close to _. To oive room for (,

to grow at a reasonable rate, we must have some contrzl

over the error term in assumption (A) . So we strengthen

(A), requiring the error term to approach zero at least

as fast as some iterated logarithm:

-i1 (n) , - ) I
(A") () = (Y + C-(log li

uniformly in 1r, as H -I 0, where

n is a fixed positive intener and
1

- < Y

This assumption still covers practically all familiar ex-

amples; when q(z) = zV log z we may take n = I in (A").

Provided that (A") holds, we can define () by:

(6.42) 6 = £ log~n +2 )  -

Then for n > 1,

(6.43) log 6 = (1 + o(i) loc S

It is easy to see that this satisfies (2.14). It also

satisfies all the other requirements that we have put on

6(£) in earlier sections, for by (A"), (6.43) and (6.42)



(6.44) g(6) = %(log ) -(log(n) -l)- I

o (log(nl) (exp(-2.

We will solve the connection problem by finding

61' 62'''" satisfying (6.17) and (6.18). The choice

of 6 will be essentially the same as in the example

in 6.3. Set i = (E). For i 1,...,n+l, set

(a) 
6 2i= F exp (log(n+3-i) E:-) 1/4

(6.45)
(6.45)(b) 6 2ES(log (n+2-i) -. )3

(c) 6 2n+4 =1

We need only verify that (6.18) holds. For the first

step, take i = 1.

(6.46) -1 log 2 (5 5- [log(1) + log 12

lo 2 1 1c ~~ 1 ) o( 2  )

- (log(n+3) -1)1 (n+3) -1= lg[- ,og _ +

+ (log(n+2) --1 )1/4 ]2

= (1+0(1)) (log(n+2 ) -1)-1/ 2  _' 0

, - -..-.---. 0-



By al-.ost the same reasoning, we can verify .

for all odd except j = 2n+3:

-i Ao2 z-1r52.-i- log (321.+2- +!) =

= (log (n+2-i) -1)-3 (-3 log (n+3-i) -1 +

+ (log(n+2-i) -l) 1/4 2

= (1+o (1)) (log (n+2-i) C-) 5/2 0

Next we Lake care of (6.18) for eien i :J

(6.4P) -Il (S i) exp_(lg (n+3-i) -i 1/4(n• = ) )- ]...
. (logn+3log + 3 log _ -(o

2 1) 1/4 (+ - ) -

= (3 + o(1))x] 2 exp(--x / ) / 0

lg(n+3-i) -1
where ec=lg-

The last step is 6. = 2 ' i.e., i = n+l.

96_ 2 - 1i (-lg - (2) -1 2

2n+3 g n+4 2+3) o " -log gE

= (1+o(1)) (log l - 0

Therefore, (6.18) holds, so (6.15) holds and the connec-

tion is complete.

j W- I
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ABSTRACT (continued)

of turning points, which includes logarithmic branch points of q(z), among many
others. To this end, a delicate contraction for an integral equation differing
from those of Langer and Olver is used to show that Bessel functions can still
approximate the solutions at a certain, small distance from the irregular point
of (1.1), even though not uniformly near it. A novel feature of the analysis is
that the extreme variation of the exponential kernel is here controlled even on
non-progressive paths. Connection is completed radially by means of the same
integral equation.
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